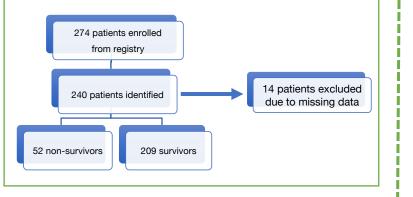


Determinants of Mortality in Aneurysmal Subarachnoid Hemorrhage: A Single Center Study Pratiwi Raissa Windiani¹, Ricky Gusanto Kurniawan^{1,3}, Beny Rilianto^{1,3}, Bambang Tri Prasetyo^{1,3}, Abrar Arham^{2,3}

¹Neurointervension Division, ²Neurosurgery Division, National Brain Center Hospital Prof. Dr. dr. Mahar Mardjono, East Jakarta, Indonesia, ³Faculty of Medicine, Airlangga University, Surabaya, Indonesia



Background and Aims

Aneurysmal subarachnoid hemorrhage (aSAH) is the most life-threatening complication of ruptured cerebral aneurysms with high mortality rate. The aim of this study was to determine the predictors of in-hospital mortality of aSAH patients.

Methods

- We retrospectively reviewed all data from the aneurysm registry of the National Brain Center Hospital Jakarta from January 2019 to June 2022.
- Demographic, clinical, treatment, and radiological variables of aSAH were analyzed by univariate analysis followed by multivariate logistic regression.
- Statistical analyzes were performed using STATA Ver.16.0.

Figure 1. Subjects Selection Process

Results

Of the 274 total cases; 260 cases of aSAH were identified and 14 cases were excluded due to missing data. Fifty-one patients (19.6%) did not survive during hospitalization. Most subjects were female (66.92%) with a mean age was 55 years old. Multivariate logistic regression analysis showed 5 variables as predictors of aSAH mortality, these included SAH grade (aOR= 2,428; p=0.047), aSAH treatments (coiling aOR=0.380; p=0.045 and clipping aOR=0.091; p=0.181), cardiovascular comorbid (aOR= 2.869; p= 0.039), pneumonia (aOR=8.869; p<0.0001), and respiratory failure (aOR=3.569; p=0.006). SAH treatments were discovered as protective factors toward mortality in aSAH.

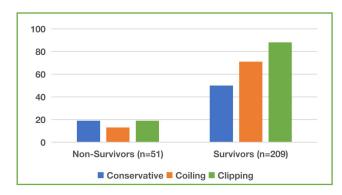


Figure 2. Distribution of Mortality in aSAH According to Treatment

Conclusions

High grade SAH, respiratory failure, pneumonia, and cardiovascular comorbid were independent factors associated with in-hospital mortality in aSAH whereas aSAH treatments (coiling and clipping) reduced the risk of mortality.

Table 1. Univariate and Multivariate Analysis

Variables	n (%)	Univariate Analysis		Multivariate Analysis	
		OR (95% Cl)	p-value	aOR (95% Cl)	p-value
Age					
<40	21 (8.0%)	Reference			
40-59	153 (58.6%)	0.752 (0.232-2.437)	0.635		
> 60	87 (33.3%)	1.645 (0.502-5.390)	0.411		
Gender					
Female	174 (66.9%)	1.102 (0.549-2.284)	0.772		
Risk Factors					
Hypertension	207 (79.6%)	1.244 (0.542-3.129)	0.588		
Diabetes	56 (21.5%)	1.504 (0.685-3.164)	0.252		
Dyslipidemia	94 (36.2%)	0.610 (0.2.86-1.244)	0.149	0.494 (0.219-1.118)	0.091
Smoking	35 (13.5%)	0.486 (1.119-1.486)	0.189	0.422 (0.116-1.529)	0.189
Family History	12 (4.6%)	0.812 (0.084-3.996)	0.792		
Grade					
High-grade SAH (WFNS IV-V)	94 (36.3%)	6.101 (2.976-12.841)	0.000	4.144 (0.116-1.529)	0.000
Treatment of aSAH					
Conservative	69 (26.5%)	Reference			
Coiling	84 (32.3%)	0.526 (0.241-1.148)	0.107	0.380 (0.148-0.978)	0.045
Clipping	107 (41.2%)	0.532 (0.256-1.106)	0.091	0.181 (0.675-0.488)	0.001
Medical Condition					
Respiratory Failure	144 (55.4%)	3.219 (1.539-7.117)	0.0007	3.569 (1.441-8.837)	0.006
Cardiovascular	53 (20.4%)	3.203 (0.540-2.387)	0.0009	2.869 (1.054-7.810)	0.039
Pneumonia	101 (38.9%)	7.461 (0.390-4.795)	0.0000	8.869 (3.517-22.364)	0.000
Hypokalemia	143 (55.0%)	2.254 (1.244-4.093)	0.354		
Hyponatremia	139 (53.5%)	2.274 (1.254-4.128)	0.587		
Hydrocephalus Treatme	nt				
Lumbar Drain	13 (5.0%)	5.382 (1.456-20.232)	0.014	3.655 (0.931-14.357)	0.063
VP Shunt	69 (26.5%)	0.935 (0.425-1.955)	0.850		
EVD	16 (6.2%)	1.397 (0.313-4.874)	0.575		
Angiography of aneurys	sms (n=265)*				
Location					
Anterior	48 (18.1%)	1.586 (0.345-14.838)	0.547		
Dome size					
<5 mm	146 (55.1%)	Reference			
5-10 mm	96 (36.2%)	1.438 (0.757-2.733)	0.266		
>10 mm	23 (8.7%)	0.220 (0.283-1.708)	0.258		
Cons		0.101(0.042-0.242)	0.000	0.101 (0.042-0.241)	0.000

Referrences

1. C Van Gijn J, Kerr RS, Rinkel GJE. Subarachnoid haemorrhage. The Lancet. 2007;369(9558):306-18.

2. Van Donkelaar CE, Bakker NA, Birks J, et al. Prediction of Outcome After Aneurysmal Subarachnoid Hemorrhage: Development and Validation of the SAFIRE Grading Scale. Stroke. 2019;50(4):837-844.

3. Ramadhania NN, Darmawan AF, Sani AF. Higher mean arterial pressure increases risk of in-hospital mortality inaneurysmal subarachnoid hemorrhage. Universa Medicina. 2020 Sep 23;39(3):153-6.

Copyright © 2022 Pratiwi Raissa Windiani pratiwiraissa@gmail.com